Russian
Al Cup

CODEWIZARDS 2016

RULES

REVISION 1.3.0

C

November — December, 2016

OrJaBJseHue

[I__The Announcement of the Competition|

. e Name e Competition|
1.2 Information about the Organizer of the Competition|
1.3 The period of the Competition|
1.4 The conditions for obtaining the status of the Participant{.
1.5 The period of registration of Participants in the System of the Organizery
1.6 The territory of the Competition|
1.7 The conditions of the Compefition (1he essence of the tasks, criteria and evaluation procedure . .
1.8 The procedure of determining the Winners and award Prizes. The prize Fund of the Competition| .
1.9 The procedure and method of informing Participants|

[2__About the world of CodeWizards 2016l

General provisions of the game and the rules of the tournament|

2.1

2.2 Description of the game world|

2.5 Unitclasses|.

Crea

tion of the strategy|

3.1

Technical part]

3.2 Control of the wizardl

B3

Implementation examples| . .

3.3.1 Javaexample|
3.3.2 CH#example.
3.3.5 C++examplel.
3.3.4 Python 2 example] . .
3.3.0 Python 3 example] . .
3.5.0 Pascal example|
3.3.7 Ruby example]

Pack

4.1.1 CLASS ActionType| .

4.1.5 CLASS BonusType| .

4.1.4 CLASS Eul@mé]. ..

[4.1.9 CLASS LaneType| . .
[T.10 CLASs LivingUnit] .

U QWO WWWWNh NN

4.1.11 CLASS Message|. 43
A112 CLASS MINIONl. . . .« o o o oo oo 44
4.1.13 CLASS MinionType|. 44
ETTE CIASSMOVEl. 45
4.1.05 CLASSPlayer] 49
4.1.16 CLASS Projectile] 49
A.T.17 CLASS ProjectileType| 50
4.1.18 CLASS Skil e L 51
A119 CLASSSTatusl 53
4.1.20 CLASS StatusType| 54
ET2T CLASSTICEl . . . o oo oo e e 55
4122 CrassUnifl 55
4123 CLAass Wizardl. 57
4124 CrassWorldl 58

[o_ Package <none>| 61
Bl TInferfaces 62
b.I.1 INTERFACE Strategy| o 62

[naBa 1

The Announcement of the Competition

The limited liability company “Mail.Ru”, established and existing in accordance with the legislation of the
Russian Federation and located at the address: 125167, Moscow, Leningradsky prospect, 39, building 79,
hereinafter “The Organizer of the Competition”, invites individuals reached by the time of publication of this
Announcement to 18 years, hereinafter “Participant”, to participate in the competition for the following
conditions:

1.1 The Name Of The Competition

“Russian Al Cup”.

The purposes of the Competition:

e increasing public interest to creation of software;
e providing the Participants an opportunity to reveal their creative abilities;

e the development of professional skills of Participants.

The Competition consists of 3 (three) stages, each of which ends with the determination of the Winners. The last
stage of the Competition is decisive.

1.2 Information about the Organizer of the Competition

Name: The LLC “Mail.Ru”

The address of the location: 125167, Moscow, Leningradsky prospect, 39, building 79,

Postal address: 125167, Moscow, Leningradsky prospect, 39, building 79, Business Center “SkyLight”
Phone number: (495) 725-63-57

Website: http://www.russianaicup.ru

E-mail: russianaicup@corp.mail.ru

1.3 The period of the Competition

The Competition period: from 00.00 hours on 7 November 2016 to 24.00 hours 25 December 2016 Moscow time.

First week (from 00.00 hours on 7 November 2016 to 24.00 hours on 13 November 2016) and fourth week (from
00.00 hours on November 28, 2016 to 24.00 hours 4 December 2016) of the Competition is testing. During this

period, the functionality of the website and judging system of the Competition may be incomplete, and rules are

subject to significant changes.

The timetable of the Competition:

e the first stage — from 00 hours 00 minutes on 26 November 2016 to 24 hours 00 minutes 27 November

2016;

e the second stage — from 00 hours 00 minutes on 10 December 2016 to 24 hours 00 minutes 11 December
2016;

e the third stage (final) — from 00 hours 00 minutes 17 December 2016 to 24 hours 00 minutes 18 December
2016.

1.4 The conditions for obtaining the status of the Participant

For participation in the Competition it is necessary to register in the System of the Organizer of the Competition.
This System are available on the website of the Organizer in the Internet at the following address:
http://www.russianaicup.ru.

1.5 The period of registration of Participants in the System of the
Organizer

Registration of Participants will be held from 00.00 hours on 7 November 2016 to 24.00 hours on 25 December
2016 inclusively.

1.6 The territory of the Competition

The Competition is held on the territory of the Russian Federation. Conducting all stages of the Competition is
carried out by remote access to the System of the Organizer via the Internet.

1.7 The conditions of the Competition (the essence of the tasks,
criteria and evaluation procedure

The order of conducting of the Competition, the essence of the task, criteria and evaluation procedure specified in
the documentation in Chapter 2.

Documentation includes:

e The Announcement of the Competition;

e The Agreement on organization and conducting of the Competition;
e The Rules of the Competition;
e Information data, which are contained in the System of the Organizer of the Competition.
The Participant can view the documents on the website of the Organizer in the Internet at the following address:

http://www.russianaicup.ru. Also the Participant can view the documents during the procedure of registration in
the System of the Organizer of the Competition.

The Organizer of the Competition has the right to change the documentation and conditions and to refuse to
conduct the Competition in accordance with the documentation and the provisions of the legislation of the
Russian Federation. In this case, the Organizer should notify the Participants about all changes by sending a
notice, in order and in the terms specified in the documentation.

1.8 The procedure of determining the Winners and award Prizes. The
prize Fund of the Competition

Evaluation criteria of the Competition, the number and order of determining the Winners can be found in Chapter
2 of this document.
The prize Fund is formed at the expense of the Organizer of the Competition.

The prize Fund:

e Ist place — Apple Macbook Pro 13";
e 2nd place — Apple Macbook Air 13";
e 3rd place — Apple iPad;

4-6 places — prizes;

1-6 places in the Sandbox — prizes.

All Participants who took part in the second or third stages, will be awarded a t-shirt. All Participants who took
participation in the third stage, will also receive a hoodie with the logo of the competition.

All Participants, who will become winners, will be notified by sending a message to the email address, indicated
during the registration in the System of the Organizer.

Prizes will be sent out to Participants as packages by the Russian Post or by other postal service during two
months after the end of the final stage. Terms of delivery of the prize to the postal address specified by the
Participant depends on the terms of delivery of the corresponding postal service. Postal addresses of the winners
the Organizer receives from the credentials of Participant in the System of the Organizer. The address must be
specified by the Participant prize-winner during three days after receipt of the notification about the prize.

In case of absence of a response in the designated period or failure to provide accurate data required for the
delivery of prizes, the Organizer has the right to refuse a Participant in the prize of the Competition. The cash
equivalent of the prize is not provided.

The winners of the Competition must give the Organizer copies of all necessary documents for accounting and
tax reporting. The list of documents which the Winner should give the Organizer, may include:
e a copy of the Winner’s passport;

e a copy of the Winner’s certificate on statement on the tax account;

e a copy of the Winner’s pension certificate;
e information about the Bank account of the Winner;
e Other documents that the Organizer will require of the Participant for the purposes of reporting on the
conducted Competition.
Along with copies the Organizer of the Competition has the right to request the originals of the documents.

In accordance with subparagraph 4 of paragraph 1 of article 228 of the Tax Code of the Russian Federation, the
Winner of the Competition who became the owner of the Prize, bear all costs payment of all applicable taxes,
stipulated by the legislation of the Russian Federation.

1.9 The procedure and method of informing Participants

Informing of Participants is carried out by placing the information on the Internet on the Website of the Organizer
at the following address: http://www.russianaicup.ru and also via the System of the Organizer of the
Competition, during the period of Competition.

[naBsa 2

About the world of CodeWizards 2016

2.1 General provisions of the game and the rules of the tournament

This competition gives the opportunity to test your programming skills by creating artificial intelligence
(strategy) to control a wizard in a special game world (read more about the features of the world of CodeWizards
2016 in following sections).

Rules of the competition are based on the MOBA genre, which is popular in the world of computer games. In
each game you will face five strategies of others players. Also you will have four allies. Five strategies located on
the same side are faction: Academy or Renegades. The main goal of these five players is to destruct the base of
the opposing faction. The main personal goal of every wizard is to collect the highest possible number of score
points. The title of winner of the game, as well as all the other places are distributed in accordance with the
number of score points. Two or more players can share one place if their scores are equal. The player gets points if
his wizard damages, destroys or is just near in the time of death a of a unit of another faction. Also the player gets
points for some other actions. All players of the faction get a significant number of points in case of reaching the
main team goal.

The rules of the game are nearly identical to the classical canons of the genre. Bases of factions are connected by
three paths (top, middle and bottom). Between these paths there are forests. The guardian towers are situated on
the paths: 2 towers of each faction on each path. Thus, in the beginning of the game there are 14 buildings on the
map. With a certain time bases of each faction generate 3 similar squads of wizards’ minions: one for each path.
They immediately run on their path in the direction of the opposing faction base, attacking all enemies on their
way.

The tournament is held in several stages, preceded by a qualification in the Sandbox. Sandbox is a competition,
which takes place during all period of the competition. On each stage the player has a certain rating value. It is an
indicator of how well his strategy is playing in the games.

The initial value of the rating in the Sandbox is 1200. At the end of any game this value can both increase and
decrease. The victory over the weak (low ranking) opponent gives a small increase, and the defeat of a strong
opponent slightly reduces your rating. Over the time, the rating in the Sandbox becomes more inert, thereby the
influence of random long series of wins and defeats by the place of the participant reduces. However, it makes
difficult to change the participant’s position with a substantial improvement of his strategy. To cancel this effect,
the participant may reset the variability of the rating to the starting value while submitting new strategy (for this
action it is necessary to activate the appropriate option). If the new strategy is accepted by the system,
participant’s rating will be reduced by a significant amount aiter next game in the Sandbox. But further
participation in games will recover the rating quickly, and it will even become higher, if your strategy really
became more effective. It is not recommended to use this option for minor, incremental improvements of your
strategy, as well as in cases when a new strategy is insufficiently tested and the effect of changes in it is not
known.

The initial value of the rating at each main stage of the tournament is 0. For each game participant gets a certain
number of rating units, which depend on his place (a system is similar to the system, which is used in “The FIA
Formula One World Championship”). If two or more participants share same place, the total number of rating
units for this place and for the following number_of _such_participants — 1 places is divided equally between
these participants. For example, if two participants share the third place, each receive half of the sum of rating
units for third and fourth places. The result of the dividing is always rounded down. Detailed information about
the stages of the tournament will be provided in announcements on the project website.

Initially, all participants can only take part in Sandbox games. Players can submit their strategies into the
Sandbox, and the last accepted strategy will be used by the system for qualification games. Each player takes part
in about one qualification game per hour. The jury can change this interval based on the capabilities of the testing
system; however, for most participants it will remain constant. There are a number of criteria that warrant the
interval between qualification games to be increased for a specific player. For each N-th full week past since the
moment of last accepted submission, the participation interval for a player is increased by N base testing
intervals. For each “crashed” strategy in 10 most recent Sandbox games, an additional fine is accrued, which
equals to 20% of the base testing interval. For more detail on the reasons of strategy crashes you can refer to
subsequent sections. The interval of participation of the player in the Sandbox can not be more than a day.

Games in the Sandbox follow a set of rules that matches the rules of a random finished tournament stage or the
rules for the next (current) stage. The closer two players’ ratings are to each other in the Sandbox, the more likely
they are to be in the same game. The Sandbox starts before the first stage of the tournament and ends some time
after the final stage (see the Schedule of stages for detail). Additionally, the Sandbox is frozen while tournament
stages are in progress. The results of games in the Sandbox are used to select players for Round 1, where 1080
participants with the highest ratings are selected (if players have equal ratings, the priority is given to the player
who sends their final strategy version earlier), as well as additional players for subsequent stages of the
tournament, including the Finals.

Tournament stages:

e In Round 1 you will learn the rules of the game and basic controls of a Wizard. Each game in this stage will
consist of 10 players, who will be distributed into two factions, so that the difference between current
ratingsﬂ of the participants in the two factions is minimum. The Wizard with the highest rating in each
faction is appointed the Supreme Wizard. His strategy can send messages to other wizards from the same
factions; it is also provided more computing resources (more CPU time). Functionality of the messages is
limited, only allowing to sencﬂ other Wizards to a certain lane. In this mode, the Wizards can only use staff
hit and «Magic Missile» spell, while the living energy of all structures is limited to half of the normal level.
Damage ratio on accidental hit of a friendly Wizard equals 25%. Regardless of the stage of the
championship friendly minions and structures take 0% of damage. Round 1, like all subsequent stages,
consists of two parts, with a short break between them (the Sandbox is resumed during the break), which
allows the players to improve their strategies. For games in each part, the latest strategy sent by a player
before the beginning of that part is chosen by the system. Games are conducted in waves. In each wave,
each player takes part in exactly one game. The number of waves in each part is determined by the testing
system capacity, but it is guaranteed to be at least ten. 300 participants with the highest ratings make it to
Round 2. For Round 2, 60 participants with the highest ratings in the Sandbox (as of the beginning of
Round 2), chosen from among those who didn’t make it to Round 1.

e In Round 2 you will be improving your Wizard control skills and study the mechanics of the Wizard
reaching new levels and learning new skills. The right approach to selecting and using skills is key to
winning this stage. The way players are selected for the games is similar to Round 1, but the Supreme
Wizard has more skills this time. He can tell what skills other wizards in the factions should learn.
Structures in this round have normal amount of living energy, and damage ratio on accidental hits of a
friendly wizard equals 50%. To additionally complicate the task, after Round 1 results are summarized,
some of the weaker strategies will be discarded, so you will have to play against stronger opponents. At the

"When a game is conducted as part of Round 1, the ratings in this round are considered. When a game is conducted in the Sandbox using
Round 1 rules, the Sandbox ratings are considered.

2Regardless of the tournament stage, messages from the Supreme Wizard can be partially or fully ignored by other Wizards’ strategies.

end of Round 2, the best 50 strategies will make it to the Finals. 10 participants will additionally be selected
to the Finals, with the highest ratings in the Sandbox (as of the Finals starting), from among those who
didn’t make it to the main tournament.

The Finals is the most important stage in the tournament. After the first two stages, only the strongest
players will remain. So in each game, you will be up against the strongest. Exactly. To manage five wizards
in your faction, 5 copies of your strategy will be running. Five wizards in the opposing faction will be
controlled by 5 copies of the opponent’s strategy. A random wizard is appointed the Supreme Wizard in
each faction. He can control other wizards in that faction by sending messages in binary format. The
restriction on binary data size is relatively high, but the message can only be received after a delay, which is
proportional to its length. Damage ratio on accidental hit of a friendly wizard equals 100%. The winner is
identified by adding up the points scored by all wizards in each faction. Otherwise the rules of the game are
the same as in Round 2. The Finals do have their peculiar features, however. The stage is still divided into
two parts, but these no longer consist of waves. Each half of the Finals features games between all pairs of
participants. The operation will be repeated if the time and capacity of the testing system allow.

After the Finals, all finalists are ranked according to their scores in descending order. In case of equal ratings, the
participant whose strategy for the Finals was sent earlier is ranked higher. Prizes for the Finals are awarded
based on the place in the final ranking. Top six finalists are awarded prizes:

Ist place — Apple Macbook Pro 13";
2nd place — Apple Macbook Air 13";
3rd place — Apple iPad;

4-6 places — valuable gifts.

After the Sandbox is over, all its participants, except for the Finals prize winners, are ranked according to their
scores in descending order. In case of equal ratings, the participant who sent the latest version of his/her earlier is
ranked higher. Prizes for the Sandbox are awarded based on the place in the final ranking. Top six players in the
Sandbox are awarded valuable prizes.

2.2

Description of the game world

The game world is two-dimensional, and all units are round. The horizontal axis in this world is directed from left
to right and vertical axis from top to bottom; the direction 0.0 matches the horizontal axis direction, and positive
rotation angle means clockwise rotation. Playing area is a square with the upper left corner at (0.0, 0.0), where
each side length equals 4000.0. No living unit can leave the playing area.

In the map layout below, copper color indicates the Academy buildings (larger circle means the faction base,

smaller circles indicate guardian towers), blue steel color indicates the Renegades’ structures, green means trees.

10 color sports (5 in the lower left corner of the map for Academy and 5 in the upper right corner of the map for
Renegades) indicate the Wizards’ spawning positions. It should be noted that coordinates of the circle centers
and tree radiuses in the forests can be different between games. New trees can also appear in the course of the
game.

The game engine transforms coordinates and directions before send it to the strategy of renegade wizard. So the
strategy always “think” that it plays for the bottom leit side, and the enemy is in the top right corner.

L I ®
® o 0° e @ . .‘
.I:.'II o '...: . 1.. .'
: .:] .'... o i.;
® Ll .
. @ l-.: :' . ® ® ..: ¢ -.I
..: @ ;'i: -...=....:.l
.:ll ":' .i. :' s o -.l".. '.-
g . - ® ® o ...'
I%q o: i Q
‘a®%s ¢ o .':.' ‘e
P e L S “ote
. . ? .l L Y : o
o'."; -". . ':." 1

The time in the game is discrete, measured in «ticks». At the beginning of each tick the game receives from the

strategies the wizards’ desired actions in this tick and updates the status of each wizard in accordance with these

desires and the limitations of the game world. Next the game calculates changes in the world and the objects it

contains, which took place during the tick, and the process is repeated with the updated data. Maximum duration

of any game equals 20000 ticks, but the game can be terminated early if either faction has reached its team goal,
or all participants strategies have been «crashed». It is extremely unlikely, but not impossible, that both factions
will reach their team goals in the same tick. Then additional points are awarded to all game participants.

10

«Crashed» strategy is not able to control a wizard anymore. The strategy is considered «crashed» in following
cases:

e The process of the strategy unexpectedly exited, or there was a problem with communication protocol
between the strategy and a game server.

e The strategy exceed one of the time limits. For one tick the strategy has 10 seconds of wall time. For all the
game the strategy process usually has

20 x <game_duration_in_ticks> + 10000 (2.1)
milliseconds of wall time and

10 x <game_duration_in_ticks> + 10000 (2.2)
milliseconds of processor time. The master wizard strategy has

30 x <game_duration_in_ticks> + 10000 (2.3)
milliseconds of wall time and

20 x <game_duration_in_ticks> + 10000 (2.4)

milliseconds of processor timeﬂ Time formula includes max game duration. This limit covers as a user code
time as a client-server communication time. The time limit remain a constant even if the real game time is
different.

e The strategy exceeded a memory limit. Strategy process can not use more than 256 MB of RAM at the

same time.

Discovering units on the map is limited by the fog of war. The strategy takes the information only about the units,
locating in vision rangelﬂof the wizard or any unit from his fraction.

2.3 Unit classes

There are 6 classes of units in the CodeWizards 2016 world, some of which are then divided into types:

e wizards;

e projectiles: Magic Missile (MAGIC_MISSILE), Frost Bolt (FROST_BOLT), Fireball (FIREBALL) and Dart
(DART);

e bonuses: Empower (EMPOWER), Haste (HASTE) and Shield (SHIELD);
e structures: Faction Base (FACTION_BASE) and Guardian Tower (GUARDIAN_TOWER);
e minions: Orc-woodcutter (ORC_WOODCUTTER) and Fetish Blowdart (FETISH_BLOWDART);

e trees.

3Despite the limit for the wall time is notably higher, than limit for the processor time, artificial «slowdowning» of strategy with commands
like «<s1leep» is prohibited (any other attempts to slowdown/destabilize the system are prohibited too. In case of such behavior, the jury can
disqualify user from the competition and block his account.

4The distance between the units is the distance between their geometric centers.

11

Wizards, structures, minions and trees are living units. The main characteristics of every living unit are their
current and maximum amount of living energy. Generally, when living energy drops to zero, a unit is considered
dead and is removed from the game world. Wizards are the only living units that feature health regeneration.
Each tick, they automatically recover some of their living energy. Regeneration rate is a real number, usually less
than one. Over several ticks it may look like a wizard is not regenerating health, but that is not true. Total
regeneration over several ticks is stored in a special pool. A wizard is considered dead if the integer part of his
living energy drops to zero, regardless of how much energy is currently stored in the pool.

Comparative characteristics of the living units are shown in the table below:

Living unit characteristics | Wizard | Orc | Fetish | Guardian Tower | Faction Base | Tree
Radius 35 25 | 25 50 100 20 — 50
Max life 100° 100 | 100 5000 1000° 6 — 30
Vision range 600 400 | 400 600 800 —
Ranged attack distance’ 500 — 300 600 800 —
Melee attack distance® 70 50 | — — — —
Attack cooldown 30° 60 | 30 240 240 —
Attack damage 1210 12 |6 36 48 —

A bonus has a radius of 20, regardless of the bonus type.

Comparative characteristics of the projectiles are shown in the table below:

Projectile characteristics | Magic Missile | Frost Bolt | Fireball | Dart
Radius 10 15 20)
Speed 40 35 30 50
Damage on direct hit 12 24 24! 6

In addition to causing damage, the frost bolt also ireezes (FROZEN) the target for 60 ticks. The frozen unit cannot
move or perform any actions, but the number of ticks remaining until the next action can be applied keeps
counting down. Buildings and trees cannot be frozen. A wizard’s strategy does not gain control until the freezing
period is over.

The fireball explodes when it hits the target or reaches maximum flight distance, causing damage to all living
units within the distance of 100 between the center of the fireball and the closest point of the unit. All units
receiving damage from the explosion also get the burning status (BURNING). [t remains in effect for 240 ticks,
causing 24 units of damage over this time. Damage from several statuses of the same type is accumulated.

A building attack does not create a projectile. Damage is caused instantly due to a magic blast.

The second Guardian Tower on the lane is immune to damage if the first tower is alive. To be able to attack the
opposite Faction Base the wizards should destroy both enemy towers on any lane.

5 Maximum living energy for a zero-level wizard. Maximum energy is increased by 10 for each level achieved.

6 Actual living energy of a structure at a specific stage of the tournament can be different from the value shown in the table.
”Maximum duration of a projectile flight or maximum distance between unit centers.

8 Maximum possible distance to the nearest point of the target.

9Minimum possible interval between a wizard’s two consecutive attacks or spells. Each action type has its own limited interval.

10Base damage from a close-combat attack or the simplest spell, «Magic Missile». The damage can be increased by the wizard learning
certain skills.

Formally, a fireball does not inflict any damage on direct hit, but as it explodes on impact, it causes damage to all living units within the
distance of 100 between the center of the fireball and the nearest point of the living unit, including the unit that was directly hit. If said distance
does not exceed the fireball radius, the explosion causes maximum damage. As distance increases, the damage is reduced in a linear manner,
until it reaches half of the value in the table at the periphery of the explosion radius.

12

2.4 Wizard characteristics

The main characteristics of every living unit are current and maximum amount of living energy. However, a
wizard also has several other important characteristics. For example, the wizard’s ability to cast spells is limited
by current and maximum amount of magic energy and its regeneration rate.

Unlike other living units, a wizard cannot be killed; you can only destroy his physical shell. After some time the
wizard will respawn in a new body. Respawn can occur at least 1200 ticks after the wizard’s death and at least
2400 ticks since his last respawn. The wizard respawns at his respawn position, or next to it if the position is
currently occupied.

In some game modes, the wizard can accumulate experience and increase its level. Every wizard starts with zero
level and grows to the maximum level of 25. Nevertheless, the rules of the game are balanced so that achieving
level 15 is almost impossible. The wizard gets experience in the same amount and on the same occasions as when
the player controlling him gets points, unless the wizard is dead and awaits respawn at that tick. A wizard needs
to score 50 experience points to get to level one; an additional 100 points for level two, 150 for level three, 200 for
level four, and so on.

The amount of living energy at level zero equals the amount of magic energy and equals 100 points. Both types of
energy grow 10 points each level. Living energy regenerates at 0.05 ticks ~! at level zero, and increases by 0.005
ticks~! with each level. The respective characteristics of magic energy are 4 times higher.

A wizard can learn exactly one skill with each level achieved. Skills are divided into 5 groups. The skills within
each group are ordered and can be learned only in sequence. The number of skills in each group equals 5. The first
and the third skill in each group, as a rule, increase one of the wizard’s characteristics. The second and fourth one
are auras. An aura operates similarly to a passive skill, but is applied not just to the wizard himself, but also to all
friendly wizards within the distance of 500 or less. If several auras apply to a wizard that improve one and the
same quality of the unit, only the one with the biggest effect is taken into account. The final, fifth skill in each
group is the most important («ultimate») skill. It enables the wizard to cast a new spell or substantially improves
an existing spell.

o Passive skills and auras in the first group increase the distance of the wizard’s spells by 25 for each level.
Thus, a wizard who has mastered all these skills will be able to cast spells at the distance of 600.
Additionally, all friendly wizards nearby will get extra distance of 50 for their spells. The last skill in this
group allows using the «Magic Missile» spell without a delay. By default, the delay in casting this spell is
60 ticks. Nevertheless, the overall delay on a wizard’s actions still applies.

e Passive skills and auras in the second group increase the damage caused by magic projectiles by 1 for each
level. The last skill in this group allows the wizard to use the «Frost Bolt» spell, which causes substantial
damage to a single opponent, in addition to freezing him for 60 ticks.

e Passive skills and auras in the third group increase the damage caused by staff hit in close combat by 3 for
each level. The last skill in this group allows the wizard to cast the «Fireball» spell, which causes damage
to a group of opponents, in addition to setting them on fire.

e Passive skills and auras in the fourth group increase the wizard’s maximum possible movement distance in
one tick by 5% for each level. The total increase from the four skills is 20%, while aura adds 10% movement
to friendly wizards nearby. The last skill in this group enables the wizard to use the «Haste» spell, which
gives a friendly wizard the HASTENED status for 1200 ticks. This status adds an extra 30% to the unit’s
movement speed, in addition to increasing the turning speed by 50%. Several statuses of the same type are
not accumulated.

e Passive skills and auras in the fifth group decrease the damage received from magic projectiles and
structure attacks by 1 for each level. The last skill in this group allows the wizard to cast the «Shield» spell,
which gives a friendly wizard the SHIELDED status for 1200 ticks. This status reduces any direct damage
and the duration of negative statuses by 33.3%. Several statuses of the same type are not accumulated.

You can find the full list of available skills in the documentation to enumeration SkillType (Chapter 4).

13

2.5 Control of the wizard

In the beginning of each tick, the game simulator sends data about the current state of the part of the world,
visible to the wizard, to the strategies of each alive wizard. In response the strategy sends a set of instructions for
control of the wizard, encapsulated in the object of the Move class.

These instructions are processed in the following order:

e Each wizard learns the skill move.skillToLearn, if it is set. The game simulator will ignore the
instruction, if the number of skills learned by the wizard is already equal to his level or if the wizard has not
yet learned all the previous skills in the group.

e Then wizards randomly perform actions, set in move.action:

— NONE. Don’t do anything.

— STAFF. Strike with the staff. The attack will strike all living units which centers are in the sector of
—m /12 to w/12. The distance from the center of the wizard to the nearest target point must not exceed
70. If the wizard died in the result of the staff strike of another wizard, made earlier within the same
tick, then the staff strike will still be performed. The dead wizard will not gain experience for the
caused damage, nevertheless, the player whose strategy controls this wizard, will receive a relevant
amount of points.

— MAGIC_MISSILE, FROST_BOLT or FIREBALL. Create the relevant magic projectile. When creating a
projectile, its center is set equal to the center of the wizard, and its direction is determined as
wizard.angle + move.castAngle. Value move.castAngle is set by the strategy and is limited by
the interval from — /12 to /12. Additional parameters move .minCastDistance and
move .maxCastDistance determine the minimum and the maximum distance of the projectile cast. If
the distance from the center of the projectile to the point of its appearance is less than
move.minCastDistance, then the projectile will pass through all other game objects, except for trees.
[f the distance from the center of the projectile to the point of its appearance is more than
move.maxCastDistance, then the missile will be removed from the game world. At that moment, the
projectile of the FIREBALL type will explode. Collisions of the magic projectile with the wizard, who
created it, are ignored. If the wizard died in the result of the staff strike of another wizard, made earlier
in the same tick, then the missile will not be created.

— HASTE or SHIELD. Apply relevant magic status to the target. The status is applied to a friendly
wizard with identifier move . statusTargetId or to the wizard himself if such a wizard is not found.
The target must be located in the sector from —m /12 to w/12, and the distance to it must not exceed
wizard.castRange. Value wizard. castRange for a wizard of the zero level is equal to 500, but it
may grow to 600 aiter some skills are learned. If the wizard died in the result of the staff strike of
another wizard, made earlier within the same tick, the status will not be applied. The wizard that casts
a status spell on any friendly wizard automatically gets the same status.

There must be not less than 30 ticks between any two consecutive acts of the wizard, different from NONE.
For each act there is its own delay, which limits consecutive use of two actions of one type. Creation of a
missile or application of the status consumes magic energy of the wizard. Desired action will be ignored if
there is not enough energy.

Characteristics of the act | Staff strike | Acceleration | Shield
Cooldown 60 120 120
Manacost — 48 48
Characteristics of the act | Magic Missile | Frost Bolt | Fireball
Cooldown 602 90 120
Manacost 12 36 48

e Then wizards are again randomly put in order and they are moved.

In the CodeWizards world, 2016 there is no inertia, and the change of speed happens instantaneously.
Strategy request move. speed determines the move of the wizard forward/back, and move . strafeSpeed

14

— sideways movement. Value move. speed is limited by the interval from —3.0 to 4.0, where positive values
mean the forward movement, and negative — backward movement. Value move . strafeSpeed is limited by
the interval from —3.0 to 3.0, where positive values mean the right side movement, and negative values —
left side movement. Limits of both intervals may be extended depending on the skills learned by the wizard,
depending on the influence of some auras, as well as in case of application of the HASTENED status. Both
types of movement may be performed simultaneously within one tick, but in that case an additional

limitation will be applied: if value \/(%":jg}i‘g‘:j)z + (’Zf;f;tf;,r;f:ng:;)z is more than 1.0, then both

settings of the movement speed (move . speed and move . strafeSpeed) will be divided by this value by the
game simulator. maxSpeed and maxStrafeSpeed — relevant limitations, applied to the movement of the
wizard this tick (with consideration of the direction of the movement, learned skills and affecting auras and
statuses).

Movement of wizards is performed sequentially, according to the selected order. At that, partial movement
of the wizard is not applied. If it is impossible to change the location of the wizard for the whole value of the
movement, set by the strategy'?, then his movement is postponed. After the iteration is completed, the
game simulator again iterates all the wizards and attempts to relocate those, whose position has not yet
changed within this tick, This happens until all the wizards have been relocated. If in the course of the next
iteration none of the wizards was moved, then the operation will be terminated.

e All wizards turn for the angle set by the strategy. By default the absolute angle change can not be higher
than 7 /30. Hastened wizard turns 1.5 times faster.

Apart from the listed actions, the supreme wizard can send messages to other wizards from his faction. Field
message . lane contains a recommendation to go to the relevant path. Field message.skillToLearn becomes
available in Round 2 and contains a recommendation to learn the specified skills. A skill may require learning of
other preliminary skills or may be unavailable due to the low level of the wizard. The wizard is recommended to
memorize the task and move towards its implementation. At that, a later task has a higher priority. In the Finals
the supreme wizard has the opportunity to send text messages. Field message . rawMessage is a byte array, its
maximum length is 1024. Usually wizards receive messages in the next tick after the dispatch, but if there is a
text part, the receipt will be delayed for ceil(message.rawMessage.length / 2.0) game ticks. If thereis a
registered message in the system for one of the wizards, but it has not yet been received by him, then new
messages to this wizard will be ignored.

At the zero tick game engine automatically assigns a lane to each wizard, except masters, and sends the
appropriate messages.

2.6 Other game objects

Each 750 ticks the base of each faction generates 3 troops of minions: per one for each of the lanes. Each troop
consists of three orks and one fetish. The troop directly rushes down its path in the direction of the base of the
opposite faction, attacking all enemies on its way. Wizards use minions as the cannon fodder. At that, they are
trying to stay in the safe area and attack the enemy from the distance.

In the forest area neutral minions may appear with some probability. Usually they are not aggressive, but if one of
the minions is damaged, all the neutral minions in the area will rush to the offender, attacking anyone on their
way.

A minion can move strictly forward not faster than 3 ticks~!. The absolute angle change of a minion can not be
higher than 7/30.

Every 2500 ticks up to two bonuses may appear on the map. The bonuses are created at the two following points:

12Delay in the application of the spell «Magic Missile» may be less in the result of learning of some skills.

13 After the relocation a wizard is partially or completely beyond the limits of the map or crosses some other alive unit.

15

(1200, 1200) and (2800, 2800). If any part of the new bonus area is already occupied by a wizard or by an existing
bonus, then the creation of the bonus will be postponed till the end of the next interval.

2.7 Collision of units

e Collision of alive units between them as well as with the borders of the map is not allowed by the game
simulator.

e [f the distance from the center of an alive unit to the center of the projectile is less than or equal to the sum
of their radii, then the alive unit will be damaged, and the projectile will be removed from the game world. At
that, the fireball explodes and damages all alive units in the area.

e If the distance from the center of a wizard to the center of the bonus is less than or equal to the sum of their
radii, then the wizard receives a magic status for 2400 ticks, depending on the bonus type:

— EMPOWER increases the damage caused by a wizard in the result of the staff strike and in case of hitting
the target with the magic projectile by 1.5 times.

— HASTE speeds up the movement of a wizard similar to the cognominal spell.

— SHIELD decreases the damage, received by a wizard, similar to the cognominal spell.

All types of collisions not described in this document are ignored by the game simulator.

2.8 Scoring

The wizard receives experience in the same amount and in the same cases, when the player, controlling the
wizard, receives points, except for when the wizard is dead in the tick when points are scored and is waiting for
respawn. Points are given for the following actions:

e Causing damage to buildings and wizards of the opposing faction. Damages are accounted with
coefficients of 0.5 and 0.25 respectively. Rounding is done down to the nearest integer. Points for damages
are given only to the player, whose wizard caused these damages.

e Destruction of buildings or wizards of the opposing faction, as well as minions of any faction, different from
the wizard’s faction. Total reward for buildings is 50% of the maximum amount of their life energy, for
minions is 25%, for wizards is 100%. Destruction may be done by the wizard himself or by any other unit
from his faction. Experience is equally distributed among all friendly wizards, the distance to whom from
the target does not exceed 600. At that, if the number of such wizards is more than one, then the total
reward increases by 67%. The destruction of buildings and minions on the lane, that is recommended by the
master wizard, as well as the destruction of neutral minions provides 20% more score points. This prize is
not activated for the lane, that has three or more wizards assigned. The master wizard always gets 20%
more experience by killing minions and buildings. Rounding is done down to the nearest integer.

e Collection of any bonus gives 150 score/experience points.

e If a wizard learns a skill, that is recommended by the master, he gains 25 experience points. If the
recommendation is not set, a wizard gains additional score for learning of any skill.

e If a wizard applies a positive status to a same faction wizard, he gains 25 experience points. A spell target
should not be affected by the status of the same type.

e In case of destruction of the opposing faction base, all friendly players receive 1000 points. The game is
finished in this case.

16

[nasa 3

Creation of the strategy

3.1 Technical part

To create a strategy, first you need to do is to choose one of the supported programming languageslﬂ Java
(Oracle JDK 8), C# (Roslyn 1.3+), C++14 (GNU MinGW C++ 6.2+), Python 2 (Python 2.7+), Python 3
(Python 3.5+), Pascal (Free Pascal 3.0+), Ruby (JRuby 9.1+, Oracle JDK 8). Possibly this set will be extended.
On the project website you can download the user pack for each of the languages. It is allowed to modify only one
file in the pack, which is meant for maintenance of your strategy, for example MyStrategy.java (for Java) or
MyStrategy.py (for Python All other files of the pack in the course of compilation of the strategy will be
replaced with standard versions. Nevertheless, you can add your own files with code to the strategy. These files
must be placed in the same directory, as the main strategy file. When submitting the solution, all of them must be
placed into one ZIP-archive (all of them must be located in the archive root). If you do not add new files in the
pack, it is enough to send the strategy file (via the dialog when selecting the file) or input its code into the text
field.

After you sent your strategy, it is put in queue for testing. First, the system will try to compile a submission with
your files, and then in case of success, it will create several short (of 200 ticks) games of different formatslﬂ

10 x 1, 10 x 1 with unlocked skills of wizards and 2 x 5. In order to control the wizard of each of the participants
of these games, a separate process with your strategy will be launched, and for this strategy to be considered
accepted (correct), none of the copies of the strategy may «crash». The players in the test games will be assigned
names in the format «<name of _player>», «<name of_player> (2)», «<name of_player> (3)» and etc.

After the successful completion of the described process, your submission receives the status «Accepted». The
first successful submission means also your your registration in the Sandbox. You are assigned the start rating
(1200), and your strategy starts participating in periodic qualification games (see the description of the Sandbox
for more details). Also the function to create your own games becomes available, in which you can choose the
strategy of any player as opponent (including your own), created before the moment of your last successful
submission. The games created by you do not affect your rating.

4 For all programming languages 32-bit compiler/evaluator versions are used.

I5C++ is the exception, because for it, it is possible to modify two files: MyStrategy.cpp and MyStrategy.h. At that, the presence in the
archive of the MyStrategy.cpp file is mandatory (otherwise the strategy cannot be compiled), and the presence of the MyStrategy.h file —
optional. In case of its absence a standard file from the pack will be used.

16 Main parameters of the game format are the number of players participating in the game, and the number of units under control of each
player. In a short form, the format is written as <number_players> X <number_units>, for example, the string 4 x 3 means that the game has
a format with 4 players, and each controls three units. The format may be complimented with the clarification, if the short notation of formats
for different stages of the championship is the same. Pay attention, that in the Final games of this championship, each wizard of one faction is
controlled by the participant’s strategy launched as a separate process. From the point of view of the game API, these wizards will be virtually
distributed among five different players, but determination of the winner will only depend on the sum of their points, and not on distribution to
specific wizards.

17

The system has limitations in relation to the number of submissions and user games, specifically:

o [t is forbidden to submit strategies more often than three times per twenty minutes. The summary
uncompressed size of strategies sent in twenty minutes can not exceed 3 MB, while the size of a single
submission is limited to 2 MB.

e You can not create more than three user games in twenty minutes. This number increases by one after the
end of every main stage of the championship.

In order to simplify the adjustment of small changes in the strategy, the system has the possibility to perform a
test submission (flag «Test submission» in the strategy submission form). The test submission will not be
displayed to other users, does not participate in the qualification games in the Sandbox and games of the
tournament stages, also it is impossible to create games with it by oneself. Nevertheless, after the system accepts
this submission, the system will automatically add the test game with ten participants (format10 x 1): the test
submission itself and nine strategies from the «Quick start» section. The test game will be visible only to the
participant, who created this test submission. The base duration of this test game is 2000 ticks. The dispatch of
test games is limited in the same way as the dispatch of normal submissions. Test games do not influence the
frequency of games creation by the user.

The players have a possibility to view past games in the special visualizer. To do that it is necessary to press the
«View» button in the list of games or press the «View game» button on the page of the game.

[f you watch the game with participation of your strategy and noticed something strange in its behavior, or your
strategy does not do what you expect from it, you can use a special utility Repeater to perform a local repeat of the
game. The local repeat of the game — is the opportunity to launch the strategy on your computer in such a way,
that it sees the game world around the same way, as it was on the server while testing. This will help you to
perform adjustments, add logging and watch the reaction of your strategy during each game moment. To do that,
download Repeater from the CodeWizards 2016 website (section «Documents» — «Repeater Utility») and unzip
it. To launch Repeater, you need installed software Java 8+ Runtime Environment. Pay attention, that any
cooperation of your strategy with the game world during the local repeat is completely ignored. This means, that
at each moment of time the surrounding world looks exactly the same for the strategy, as it looked during the
game in the course of testing on the server, and does not depend on the actions your strategy performs. The
Repeater utility only posses the data, which were sent by your strategy, but does not posses the complete
recording of the game. Thus the visualization of the game is not possible. You can read more information about
the Repeater utility in the relevant section on the website.

Apart from everything mentioned above, the players have an opportunity to launch simple test games locally on
their computer. To do that, it is necessary to download a zip-file with the Local runner utility from the website
section «Documents» — «Local runner». Use of this utility will allow you to test your strategy in conditions,
similar to the conditions of the test game on the website, but without any limitations in relation to the number of
created games. Renderer for local games is significantly different from the renderer on the site. All game objects
in it are displayed schematically (without colorful models). It is very easy to create a local test game: launch Local
runner with the help of the relevant launch script (*.bat for Windows or *.sh for *nix systems), then launch your
strategy from the development area (or any way that is convenient for you) and watch the game. During local
games, you can make adjustments to your strategy, put break points. But remember, that Local runner waits for
the strategy response for not more than 30 minutes. Upon expiry of this time, it will consider the strategy
«crashed» and will continue to work without it.

3.2 Control of the wizard

In the beginning of the game an object of the MyStrategy class will be created for your wizard, and in the field of
this object the strategy can save information about the course of the game. Control of the wizard is performed via
the move method of the strategy, which is called once per tick. The method receives the following parameters:

e the wizard self, for which the method is called;

e current state of the world world;

18

e set of game constants game;

e object move, by setting the parameters of which the strategy determines the behavior of the wizard.

Implementation of the user shell of the strategy in different languages may differ, nevertheless, in the general case
it is not guaranteed, that in case of different calls of the method move it will receive pointers to the same objects
as the parameters. Thus, it is not allowed, for example, to save pointers to objects world or player and in the
course of the next ticks receive updated information about these objects by reading their fields.

19

3.3 Implementation examples

Hereinafter there are simple examples of strategies for all programming languages, these strategies move the
wizard forward and to the right, at the same time turning him to the right. Additionally strategy requests to cast
«Magic Missile». You can find complete documents according to classes and methods of Java in the following
chapters.

3.3.1 Java example

import model.*;

public final class MyStrategy implements Strategy {
@0verride
public void move(Wizard self, World world, Game game, Move move) {
move.setSpeed (game.getWizardForwardSpeed()) ;
move.setStrafeSpeed (game.getWizardStrafeSpeed());
move.setTurn(game.getWizardMaxTurnAngle()) ;
move.setAction(ActionType.MAGIC_MISSILE);

3.3.2 C# example

using Com.CodeGame.CodeWizards2016.DevKit.CSharpCgdk.Model;

namespace Com.CodeGame.CodeWizards2016.DevKit.CSharpCgdk {
public sealed class MyStrategy : IStrategy {
public void Move(Wizard self, World world, Game game, Move move) {
move.Speed = game.WizardForwardSpeed;
move.StrafeSpeed = game.WizardStrafeSpeed;
move.Turn = game.WizardMaxTurnAngle;
move.Action = ActionType.MagicMissile;

20

3.3.3 C++ example

#include "MyStrategy.h"

#define PI 3.14159265358979323846
#define _USE_MATH_DEFINES

#include <cmath>
#include <cstdlib>

using namespace model;
using namespace std;

void MyStrategy::move(const Wizard& self, const World& world, const Game& game, Move& move) {
move.setSpeed(game.getWizardForwardSpeed()) ;
move.setStrafeSpeed (game.getWizardStrafeSpeed());
move.setTurn(game.getWizardMaxTurnAngle()) ;
move.setAction (MAGIC_MISSILE) ;

}

MyStrategy: :MyStrategy() { }

21

3.3.4 Python 2 example

In Python 2 current wizard’s name is changed from «self» to «me».

from
from
from
from
from

model.ActionType import ActionType
model.Wizard import Wizard
model.Game import Game

model.Move import Move
model.World import World

class MyStrategy:
def move(self, me, world, game, move):

Otype me: Wizard

Otype world: World

Otype game: Game

Otype move: Move

nnn

move.speed = game.wizard_forward_speed
move.strafe_speed = game.wizard_strafe_speed
move.turn = game.wizard_max_turn_angle
move.action = ActionType.MAGIC_MISSILE

3.3.5 Python 3 example

In Python 3 current wizard’s name is changed from «self» to «me».

from
from
from
from
from

clas

model.ActionType import ActionType
model.Wizard import Wizard
model.Game import Game

model.Move import Move
model.World import World

s MyStrategy:

def move(self, me: Wizard, world: World, game: Game, move:

move.speed = game.wizard_forward_speed
move.strafe_speed = game.wizard_strafe_speed
move.turn = game.wizard_max_turn_angle
move.action = ActionType.MAGIC_MISSILE

22

Move) :

3.3.6 Pascal example

In Pascal current wizard’s name is changed from «self» to «me».

unit MyStrategy;
interface

uses
StrategyControl, TypeControl, ActionTypeControl, BonusControl, BonusTypeControl, BuildingControl,
CircularUnitControl, FactionControl, GameControl, LaneTypeControl, LivingUnitControl, MessageContr
MinionTypeControl, MoveControl, PlayerContextControl, PlayerControl, ProjectileControl, Projectile
SkillTypeControl, StatusControl, StatusTypeControl, TreeControl, UnitControl, WizardControl, World

type
TMyStrategy = class (TStrategy)
public
procedure Move(me: TWizard; world: TWorld; game: TGame; move: TMove) ; override;
end;

implementation

uses
Math;

procedure TMyStrategy.Move(me: TWizard; world: TWorld; game: TGame; move: TMove);

begin
move.Speed := game.WizardForwardSpeed;
move.StrafeSpeed := game.WizardStrafeSpeed;
move.Turn := game.WizardMaxTurnAngle;
move.Action := ACTION_MAGIC_MISSILE;

end;

end.

23

3.3.7 Ruby example

In Ruby current wizard’s name is changed from «self» to «me».

require ’./model/wizard’
require ’./model/game’
require ’./model/move’
require ’./model/world’

class MyStrategy
O@param [Wizard] me
Oparam [World] world
Oparam [Game] game
@param [Move] move
def move(me, world, game, move)
move.speed = game.wizard_forward_speed
move.speed = game.wizard_strafe_speed
move.turn = game.wizard_max_turn_angle
move.action = ActionType::MAGIC_MISSILE
end
end

24

[naBa 4

Package model

Package Contents Page
Classes

At ON Y P . . o
Available wizard actions.

B OMIUS .o 27
This class describes a bonus.

BonUSTY P .o 28
Bonus type.

BUilding. ... 28
This class describes a building.

Building Ty Pe. ... 29]
Building type.

CircularUnit . .o 301
This base class describes any circular unit in the game world.

Faction . .. 301
Unit or player faction.

GaINE . .. 31
An instance of this class contains all game constants.

LaneTyPe ..ot [42)
Lane type.

LivingUnit ..o [42]

This base class is inherited from a circular unit and describes any living unit in
the game world.

S S A . ..o it
This class describes a message, that master wizard can send to other wizards of
his faction.

0N .
This class is inherited from a living unit and describes a minion.

Minion Ty P . .
Minion type.

OV .
An encapsulated result of each move of your strategy.

Play T . . o
The instance of this class contains all the data about player state.

Projectile

This class is inherited from a circular unit and describes a projectile.

25

ProjectileType ... o
Projectile type.

SKIIITY P . .o
Skill type.

S AU . o
A magical status, affecting living unit.

SHatUST Y P . o
Status type.

T o
This class is inherited from a living unit and describes a tree.

Uit
Base class that describes any object (“unit”) in the game world

Wizard .o
This class is inherited from a living unit and describes a wizard

WOrld .

This class describes a game world.

26

4.1 Classes

4.1.1 CLASS ActionType

Available wizard actions.

A wizard can not perform any new action, if he is not yet recovered from his previous action
(wizard.remainingActionCooldownTicks is greater than 0).

A wizard can not perform the specific new action, if it is not yet recovered from its previous usage
(remainingCooldownTicksByAction[actionType.ordinal ()] is greater than 0).

DECLARATION

public final class ActionType

extends Enum

FIELDS

e public static final ActionType NONE
— Do nothing.

e public static final ActionType STAFF

— Perform a melee attack with a stalff.

This attack damages all living units in a sector of -game.staffSector / 2.0 to game.staffSector
/ 2.0. The distance between wizard and target centers should not exceed game . staffRange +
livingUnit.radius.

e public static final ActionType MAGIC_MISSILE
— Cast a magic missile.

Magic missile is a basic spell of any wizard. Inflicts some damage upon a direct hit.

The center of a newly created magic missile is the same as the center of a caster wizard. The angle of a
projectile is equal to wizard.angle + move.castAngle, and its speed is

game .magicMissileSpeed. All collisions between a projectile and its caster are ignored by the game
engine.

Requires game .magicMissileManacost manapoints.

e public static final ActionType FROST_BOLT
— Cast a frost bolt.

A frost bolt inflicts some damage upon a direct hit and freezes a target.

27

The center of a newly created frost bolt is the same as the center of a caster wizard. The angle of a
projectile is equal to wizard.angle + move.castAngle, and its speed is game . frostBoltSpeed.
All collisions between a projectile and its caster are ignored by the game engine.

Requires the FROST_BOLT skill and game . frostBoltManacost manapoints.
e public static final ActionType FIREBALL
— Cast afireball.

A fireball explodes when reaching maximal cast range or upon a collision with living unit. Damages
and burns all living units nearby.

The center of a newly created fireball is the same as the center of a caster wizard. The angle of a
projectile is equal to wizard.angle + move.castAngle, and its speed is game.fireballSpeed. All
collisions between a projectile and its caster are ignored by the game engine.

Requires the FIREBALL skill and game . firebal1Manacost manapoints.

e public static final ActionType HASTE

— Cast a haste spell, that temporarily speedups the friendly wizard with ID equal to
move.statusTargetId or the caster himself if the game engine can not find such wizard.

Requires the HASTE skill and game . hasteManacost manapoints.

e public static final ActionType SHIELD

— Cast a shield spell, that temporarily protects the friendly wizard with ID equal to
move.statusTargetId or the caster himself if the game engine can not find such wizard.

Requires the SHIELD skill and game . shieldManacost manapoints.

4.1.2 CLASS Bonus

This class describes a bonus. Bonus is a static useful circular unit.

DECLARATION

public class Bonus

extends CircularUnit

METHODS

o getlType
public BonusType getType()

— Returns - the bonus type.

28

4.1.3 CLASS BonusType

Bonus type.

Besides the primary effect each taken bonus gives game . bonusScoreAmount score points to the player. The wizard gains the
same amount as xp.

DECLARATION

public final class BonusType

extends Enum

FIELDS

e public static final BonusType EMPOWER

— Dramatically increases the damage of ranged and melee attacks for some time.

e public static final BonusType HASTE
— Grants the HASTENED status to the wizard.

Duration of the status is longer than usually.

e public static final BonusType SHIELD
— QGrants the SHIELDED status to the wizard.

Duration of the status is longer than usually.

4.1.4 CLASS Building

This class describes a building. Faction building automatically attack a random enemy in a certain range.

A building can not be (FROZEN).

DECLARATION

public class Building

extends LivingUnit

29

METHODS

getAttackRange
public double getAttackRange()

— Returns - the maximal range (between units’ centers), at which this building can attack other units.

o getCooldownTicks
public int getCooldownTicks()

— Returns - the delay between attacks.

e getDamage
public int getDamage()

— Returns - the damage of one attack.

e getRemainingActionCooldownTicks
public int getRemainingActionCooldownTicks()

— Returns - the amount of ticks remaining before the next attack.

e getType
public BuildingType getType()

— Returns - the building type.

e getVisionRange
public double getVisionRange()

— Returns - the maximal range (between units’ centers), at which this building can detect other units.

4.1.5 CLASS BuildingType

Building type.

DECLARATION

public final class BuildingType

extends Enum

FIELDS

e public static final BuildingType GUARDIAN_TOWER
— QGuardian tower.

e public static final BuildingType FACTION BASE
— Faction base.

30

4.1.6 CLASS CircularUnit

This base class describes any circular unit in the game world.

DECLARATION

public abstract class CircularUnit

extends Unit

METHODS

o getRadius
public double getRadius()

— Returns - the radius of this unit.

4.1.7 CLASS Faction

Unit or player faction.

DECLARATION

public final class Faction

extends Enum

FIELDS

public static final Faction ACADEMY
— Wizards, minions and buildings of Academy.

public static final Faction RENEGADES
— Wizards, minions and buildings of Renegades.

public static final Faction NEUTRAL
— Neutral units. Do not attack first, but will strike back when damaged.

public static final Faction OTHER
— All other units in the game world.

31

4.1.8 CLASS Game

An instance of this class contains all game constants.

DECLARATION

public class Game

extends Object

METHODS

o getAuraSkillRange
public double getAuraSkillRange()

— Returns - the range of an aura skill.

e getBonusAppearancelntervalTicks
public int getBonusAppearancelntervalTicks()

— Returns - the interval at which appears a bonus.

Every 25008 ticks up to two bonuses may appear on the map. The bonuses are created at the two
following points: (mapSize * 0.3, mapSize * 0.3)and (mapSize * 0.7,mapSize * 0.7).Ifany
part of the new bonus area is already occupied by a wizard or by an existing bonus, then the creation of
the bonus will be postponed till the end of the next interval.

e getBonusRadius
public double getBonusRadius()

— Returns - the radius of a bonus.

e getBonusScoreAmount
public int getBonusScoreAmount()

— Returns - the amount of score and experience points for taking a bonus.

e getBuildingDamageScoreFactor
public double getBuildingDamageScoreFactor()

— Returns - the factor of the experience points gained by the wizard for the damage dealt to the
opposite faction buildings.

o getBuildingEliminationScorefFactor
public double getBuildingEliminationScoreFactor()

— Returns - the factor of the experience points gained by the wizard for destroying the opposite faction
building.

Applies to the maximal amount of building’s hitpoints.

32

getBurningDurationTicks
public int getBurningDurationTicks()

— Returns - the duration of the BURNING status.

getBurningSummaryDamage
public int getBurningSummaryDamage()

— Returns - the total damage of the BURNING status.

getDartDirectDamage
public int getDartDirectDamage()

— Returns - the dart damage.

getDartRadius
public double getDartRadius()

— Returns - the radius of a dart.

getDartSpeed
public double getDartSpeed()

— Returns - the dart speed.

getEmpoweredDamagefFactor
public double getEmpoweredDamageFactor()

— Returns - the damage multiplier of empowered living unit. DOT (damage over time) is excluded.

getEmpoweredDurationTicks
public int getEmpoweredDurationTicks()

— Returns - the duration of the EMPOWERED status.

getFactionBaseAttackRange
public double getFactionBaseAttackRange()

— Returns - the maximal range (between units’ centers), at which a faction base can attack other units.

getfFactionBaseCooldownTicks
public int getFactionBaseCooldownTicks()

— Returns - the minimal possible interval between any two attacks of a faction base.

getFactionBaseDamage
public int getFactionBaseDamage()

— Returns - the damage of one attack of a faction base.

getFactionBaselife
public double getFactionBaseLife()

— Returns - the maximal amount of faction base’s hitpoints.

getFactionBaseRadius
public double getFactionBaseRadius()

— Returns - the radius of a faction base.

getFactionBaseVisionRange
public double getFactionBaseVisionRange()

— Returns - the maximal range (between units’ centers), at which a faction base can detect other units.

33

getFactionMinionAppearancelntervalTicks
public int getFactionMinionAppearancelntervalTicks()

— Returns - the interval at which appear the minions of the two opposing factions (ACADEMY and
RENEGADES).

The minions of each of these factions appear in three groups near their base (one group per lane).
Each group consists of three orcs and one fetish. The minions immediately begin to advance on their
lane toward the opposite faction base, attacking all enemies in their path.

getFetishBlowdartActionCooldownTicks
public int getFetishBlowdartActionCooldownTicks()

— Returns - the minimal possible interval between any two attacks of a fetish.

getFetishBlowdartAttackRange
public double getFetishBlowdartAttackRange()

— Returns - the maximal dart fly range.

getFetishBlowdartAttackSector
public double getFetishBlowdartAttackSector()

— Returns - the dart throw sector.

The relative angle of a dart is in range of -fetishBlowdartAttackSector / 2.0 to
fetishBlowdartAttackSector / 2.0.

getFireballCooldownTicks
public int getFireballCooldownTicks()

— Returns - the minimal possible interval between any two “Fireball” spell casts.

getFireballExplosionMaxDamage
public int getFireballExplosionMaxDamage()

— Returns - the damage of the fireball at the epicenter of the explosion.

A living unit takes the firebal1ExplosionMaxDamage if the distance from the center of the explosion
to the nearest point of this unit does not exceed the fireballExplosionMaxDamageRange. As you
increase the distance to the fireballExplosionMinDamageRange, the damage of the fireball
decreases in a linear manner and reaches fireballExplosionMinDamage. If the distance from the
center of the explosion to the nearest point of the living unit exceeds
fireballExplosionMinDamageRange, this unit takes no damage.

If a living unit takes any damage from the fireball explosion, it receives a BURNING status.

getFireballExplosionMaxDamageRange
public double getFireballExplosionMaxDamageRange()

— Returns - the radius of the area in which living units are taking maximal damage from the fireball
projectile explosion.
— See Also

* Game.getFireballExplosionMaxDamage ()

getFireballExplosionMinDamage
public int getFireballExplosionMinDamage()

— Returns - the damage of the fireball on the periphery of the explosion.
— See Also

* Game.getFireballExplosionMaxDamage ()

34

getFireballExplosionMinDamageRange
public double getFireballExplosionMinDamageRange()

— Returns - the radius of the area in which living units are taking any damage from the fireball
projectile explosion.

— See Also
* Game.getFireballExplosionMaxDamage ()

getFireballManacost
public int getFireballManacost()

— Returns - the “Fireball” spell manacost.

getFireballRadius
public double getFireballRadius()

— Returns - the radius of a fireball projectile.

getFireballSpeed
public double getFireballSpeed()

— Returns - the fireball projectile speed.

getFriendlyFireDamagefFactor
public double getFriendlyFireDamageFactor()

— Returns - Returns the damage part dealt by the wizards one faction to each other as a result of
friendly fire.

The value depends on the game mode, but is always in range of 0.0 to 1.0.

Regardless of the game mode, wizards can not damage friendly minions and buildings.

getFrostBoltCooldownTicks
public int getFrostBoltCooldownTicks()

— Returns - the minimal possible interval between any two “Frost bolt” spell casts.

getFrostBoltDirectDamage
public int getFrostBoltDirectDamage()

— Returns - the frost bolt projectile damage.

getFrostBoltManacost
public int getFrostBoltManacost()

— Returns - the “Frost bolt” spell manacost.

getFrostBoltRadius
public double getFrostBoltRadius()

— Returns - the radius of a frost bolt projectile.

getFrostBoltSpeed
public double getFrostBoltSpeed()

— Returns - the frost bolt projectile speed.

getFrozenDurationTicks
public int getFrozenDurationTicks()

— Returns - the duration of the FROZEN status.

35

getGuardianTowerAttackRange
public double getGuardianTowerAttackRange()

— Returns - the maximal range (between units’ centers), at which a guardian tower can attack other
units.

getGuardianTowerCooldownTicks
public int getGuardianTowerCooldownTicks()

— Returns - the minimal possible interval between any two attacks of a guardian tower.

getGuardianTowerDamage
public int getGuardianTowerDamage()

— Returns - the damage of one attack of a guardian tower.

getGuardianTowerLife
public double getGuardianTowerLife()

— Returns - the maximal amount of guardian tower’s hitpoints.

getGuardianTowerRadius
public double getGuardianTowerRadius()

— Returns - the radius of a guardian tower.

getGuardianTowerVisionRange
public double getGuardianTowerVisionRange()

— Returns - the maximal range (between units’ centers), at which a guardian tower can detect other
units.

getHasteCooldownTicks
public int getHasteCooldownTicks()

— Returns - the minimal possible interval between any two “Haste” spell casts.

getHasteManacost
public int getHasteManacost()

— Returns - the “Haste” spell manacost.

getHastenedBonusDurationFactor
public double getHastenedBonusDurationFactor()

— Returns - the HASTENED status duration multiplier (in case of taking a bonus).

getHastenedDurationTicks
public int getHastenedDurationTicks()

— Returns - the duration of the HASTENED status.

getHastenedMovementBonusFactor
public double getHastenedMovementBonusFactor()

— Returns - the relative move speed boost of a hastened unit.

The maximal possible wizard speed is 1.0 + 4.0 * movementBonusFactorPerSkillLevel +
hastenedMovementBonusFactor of the base speed.

getHastenedRotationBonusFactor
public double getHastenedRotationBonusFactor()

36

— Returns - the relative turn speed boost of a hastened unit.

getlLevelUpXpValues
public int[] getLevelUpXpValues()

— Returns - the non-negative integers.

The numbers of items is equal to the number of levels a wizard can gain. An item N mean a number of
experience points a wizard of level N should get to reach the next level. Thus, the amount of experience
required for the zero level wizard to get to the level N, is the sum of the first N elements.

getMagicalDamageAbsorptionPerSkillLevel
public int getMagicalDamageAbsorptionPerSkillLevel()

— Returns - the absolute decrease of the incoming magical damage for each learned skill, which is one
of the prerequisites of the SHIELD skill. DOT (damage over time) is excluded.

getMagicalDamageBonusPerSkilll evel
public int getMagicalDamageBonusPerSkillLevel()

— Returns - the absolute increase of the wizard spell damage for each learned skill, which is one of the
prerequisites of the FROST_BOLT skill. DOT (damage over time) is excluded.

getMagicMissileCooldownTicks
public int getMagicMissileCooldownTicks()

— Returns - the minimal possible interval between any two “Magic missile” spell casts.

getMagicMissileDirectDamage
public int getMagicMissileDirectDamage()

— Returns - the magic missile projectile damage.

getMagicMissileManacost
public int getMagicMissileManacost()

— Returns - the “Magic missile” spell manacost.

getMagicMissileRadius
public double getMagicMissileRadius()

— Returns - the radius of a magic missile projectile.

getMagicMissileSpeed
public double getMagicMissileSpeed()

— Returns - the magic missile projectile speed.

getMapSize
public double getMapSize()

— Returns - the size (both width and height) of the map.

getMinionDamageScoreFactor
public double getMinionDamageScoreFactor()

— Returns - the factor of the experience points gained by the wizard for the damage dealt to the other
faction minions.

getMinionEliminationScorefactor
public double getMinionEliminationScoreFactor()

37

— Returns - the factor of the experience points gained by the wizard for killing the other faction minion.

Applies to the maximal amount of minion’s hitpoints.

getMinionlLife
public int getMinionLife()

— Returns - the maximal amount of minion’s hitpoints.

getMinionMaxTurnAngle
public double getMinionMaxTurnAngle()

— Returns - the maximal turn speed of a minion.

getMinionRadius
public double getMinionRadius()

— Returns - the radius of a minion.

getMinionSpeed
public double getMinionSpeed()

— Returns - the forward speed of a minion.

A minion can not strafe or move backward.

getMinionVisionRange
public double getMinionVisionRange()

— Returns - the maximal range (between units’ centers), at which a minion can detect other units.

getMovementBonusFactorPerSkilll evel
public double getMovementBonusFactorPerSkillLevel()

— Returns - the relative increase of the move speed for each learned skill, which is one of the
prerequisites of the HASTE skill.

The maximal possible wizard speedis 1.0 + 4.0 * movementBonusFactorPerSkillLevel +
hastenedMovementBonusFactor of the base speed.

getOrcWoodcutterActionCooldownTicks
public int getOrcWoodcutterActionCooldownTicks()

— Returns - the minimal possible interval between any two attacks of an orc.

getOrcWoodcutterAttackRange
public double getOrcWoodcutterAttackRange()

— Returns - the orc’s axe range.

An axe attack damages all living units if the distance between orc’s and target’s centers is not greater
than orcWoodcutterAttackRange + livingUnit.radius.

getOrcWoodcutterAttackSector
public double getOrcWoodcutterAttackSector()

— Returns - the orc’s axe sector.

An axe attack damages all living units in a sector of ~orcWoodcutterAttackSector / 2.0 to
orcWoodcutterAttackSector / 2.0.

38

getOrcWoodcutterDamage
public int getOrcWoodcutterDamage()

— Returns - the damage of one attack of an orc.

getRandomSeed
public long getRandomSeed()

— Returns - the number that your strategy may use to initialize a generator of random numbers.

getRangeBonusPerSkillLevel
public double getRangeBonusPerSkillLevel()

— Returns - the absolute increase of the wizard cast range for each learned skill, which is one of the
prerequisites of the ADVANCED_MAGIC_MISSILE skill.

getRawMessageMaxlLength
public int getRawMessageMaxLength()

— Returns - the maximal possible length of a raw message.

[f a message has higher length, then it will be completely ignored.

getRawMessageTransmissionSpeed
public double getRawMessageTransmissionSpeed()

— Returns - the raw message transmission speed.

If the raw message is empty, the addressee will receive it in the next game tick. In other case, the time
of receipt of the message will be delayed for ceil (message.rawMessage.length /
rawMessageTransmissionSpeed) game ticks.

getScoreGainRange
public double getScoreGainRange()

— Returns - the maximal range, at which a wizard gains experience points in case, if a friendly unit kills
an other faction unit.

The experience is evenly distributed between all the wizards not farther than scoreGainRange from a
killed unit, and the killer unit if he is also a wizard.

[f the damage is not fatal, this parameter is not used. If the attacker is a wizard, than the experience
completely goes to this wizard. If the attacker is a minion or a building, nobody gains an experience.

The range is considered as the range between units’ centers.

getShieldCooldownTicks
public int getShieldCooldownTicks()

— Returns - the minimal possible interval between any two “Shield” spell casts.

getShieldedBonusDurationFactor
public double getShieldedBonusDurationFactor()

— Returns - the SHIELDED status duration multiplier (in case of taking a bonus).

getShieldedDirectDamageAbsorptionFactor
public double getShieldedDirectDamageAbsorptionFactor()

— Returns - the damage part absorbed by shield. DOT (damage over time) is excluded.

39

getShieldedDurationTicks
public int getShieldedDurationTicks()

— Returns - the SHIELDED duration.

getShieldManacost
public int getShieldManacost()

— Returns - the “Shield” spell manacost.

getStaffCooldownTicks
public int getStaffCooldownTicks()

— Returns - the minimal possible interval between any two staff attacks.

getStaffDamage
public int getStafiDamage()

— Returns - the base staff damage.

The effective damage may be higher depending on skills of the wizard and auras of nearby friendly
wizards.

getStaffDamageBonusPerSkilllevel
public int getStafiDamageBonusPerSkillLevel()

— Returns - the absolute increase of the wizard staff damage for each learned skill, which is one of the
prerequisites of the FIREBALL skill.

getStaffRange
public double getStaffRange()

— Returns - the wizard’s staff range.

A staff attack damages all living units if the distance between wizard’s and target’s centers is not
greater than staffRange + livingUnit.radius.

getStaffSector
public double getStafiSector()

— Returns - the wizard’s staff sector.

A staff attack damages all living units in a sector of -staffSector / 2.0to staffSector / 2.0.
This also applies to the status spells and to the relative projectile angle.

getTeamWorkingScoreFactor
public double getTeamWorkingScoreFactor()

— Returns - the experience multiplier applied in case, if the enemy unit died near two or more friendly
wizards.

After applying this multiplier, the amount of the experience is rounded down.

getTickCount
public int getTickCount()

— Returns - the base game duration in ticks. A real game duration may be lower. Equals to
world.tickCount.

getVictoryScore
public int getVictoryScore()

40

— Returns - the amount of experience points received by each player of the faction in case of victory.

getWizardActionCooldownTicks
public int getWizardActionCooldownTicks()

— Returns - the minimal possible interval between any two actions of a wizard.

getWizardBackwardSpeed
public double getWizardBackwardSpeed()

— Returns - the base limit of wizard’s backward speed.

The effective backward speed may be higher depending on skills of the wizard and auras of nearby
friendly wizards. The HASTENED status can also greatly speed up a wizard.

getWizardBaselLife
public int getWizardBaseLife()

— Returns - the maximal amount of wizard’s hitpoints at initial level.

getWizardBaselifeRegeneration
public double getWizardBaseLifeRegeneration()

— Returns - the regeneration speed of wizard’s hitpoints at initial level.

getWizardBaseMana
public int getWizardBaseMana()

— Returns - the maximal amount of wizard’s manapoints at initial level.

getWizardBaseManaRegeneration
public double getWizardBaseManaRegeneration()

— Returns - the regeneration speed of wizard’s manapoints at initial level.

getWizardCastRange
public double getWizardCastRange()

— Returns - the base cast range of a wizard.

The effective cast range (wizard. castRange) may be higher depending on skills of the wizard and
auras of nearby friendly wizards.

getWizardDamageScoreFactor
public double getWizardDamageScoreFactor()

— Returns - the factor of the experience points gained by the wizard for the damage dealt to the
opposite faction wizards.

getWizardEliminationScorefactor
public double getWizardEliminationScoreFactor()

— Returns - the factor of the experience points gained by the wizard for killing the opposite faction
wizard.

Applies to the maximal amount of wizard’s hitpoints.

getWizardForwardSpeed
public double getWizardForwardSpeed()

— Returns - the base limit of wizard’s forward speed.

The effective forward speed may be higher depending on skills of the wizard and auras of nearby
friendly wizards. The HASTENED status can also greatly speed up a wizard.

41

o getWizardLifeGrowthPerLevel
public int getWizardLifeGrowthPerLevel()

— Returns - the growth of wizard’s hitpoints per level.

o getWizardLifeRegenerationGrowthPerlevel
public double getWizardLifeRegenerationGrowthPerLevel()

— Returns - the growth of the regeneration speed of wizard’s hitpoints.

o getWizardManaGrowthPerlLevel
public int getWizardManaGrowthPerLevel()

— Returns - the growth of wizard’s manapoints per level.

o getWizardManaRegenerationGrowthPerLevel
public double getWizardManaRegenerationGrowthPerLevel()

— Returns - the growth of the regeneration speed of wizard’s manapoints.

o getWizardMaxResurrectionDelayTicks
public int getWizardMaxResurrectionDelayTicks()

— Returns - the maximal possible delay of a wizard’s revival.

o getWizardMaxTurnAngle
public double getWizardMaxTurnAngle()

— Returns - the base limit of wizard’s turn speed.

The HASTENED status increases this limit by 1.0 + hastenedRotationBonusFactor times.

o getWizardMinResurrectionDelayTicks
public int getWizardMinResurrectionDelayTicks()

— Returns - the minimal possible delay of a wizard’s revival.

o getWizardRadius
public double getWizardRadius()

— Returns - the radius of a wizard.

o getWizardStrafeSpeed
public double getWizardStrafeSpeed()

— Returns - the base limit of wizard’s strafe speed.

The effective strafe speed may be higher depending on skills of the wizard and auras of nearby friendly
wizards. The HASTENED status can also greatly speed up a wizard.

o getWizardVisionRange
public double getWizardVisionRange()

— Returns - the maximal range (between units’ centers), at which a wizard can detect other units.

o isRawMessagesEnabled
public boolean isRawMessagesEnabled()

— Returns - true if and only if the master wizards in this game can send raw messages.

o isSkillsEnabled
public boolean isSkillsEnabled()

— Returns - true if and only if the wizards in this game can gain new levels and learn skills.

42

4.1.9 CLASS LaneType

Lane type.

DECLARATION

public final class LaneType

extends Enum

FIELDS

e public static final LaneType TOP
— Top lane. It goes through the lower left, the upper left and the upper right corners of the map.

e public static final LaneType MIDDLE

— Middle lane. Directly connects the lower left and the upper right corners of the map.

e public static final LaneType BOTTOM
— Bottom lane. It goes through the lower left, the lower right and the upper right corners of the map.

4.1.10 CLASS LivingUnit

This base class is inherited from a circular unit and describes any living unit in the game world.

DECLARATION

public abstract class LivingUnit

extends CircularUnit

METHODS

e getlife
public int getLife()

— Returns - the current amount of hitpoints.

43

e getMaxlLife
public int getMaxLife()

— Returns - the maximal amount of hitpoints.

e getStatuses
public Status[] getStatuses()

— Returns - the magical statuses affecting this living unit.

4.1.11 CLASS Message

This class describes a message, that master wizard can send to other wizards of his faction.

The message is sent personally to each wizard. Other wizards are unable to intercept him.

The recipient receives the message in the next game tick or later, depending on the size of the message.

The wizard is free to ignore as any part of the message and the entire message, however this can lead to the defeat of wizard’s

faction.

DECLARATION

public class Message

extends Object

METHODS

o getlLane
public LaneType getlLane()

— Returns - the order to control the specified lane.

o getRawMessage
public byte[] getRawMessage()

— Returns - the text message in a forgotten ancient language.

The maximal message length is game . rauMessageMaxLength. The speed of sending a message
depends on its length. If the text part of the message is empty, the addressee will receive it in the next
game tick. In other case, the time of receipt of the message will be delayed for
ceil(rawMessage.length / game.rawMessageTransmissionSpeed) game ticks.

The field value may not be available in all game modes.

e getSkillTolearn
public SkillType getSkillToLearn()

44

— Returns - the order to learn the specified skill.
This skill may require to learn other skills or be unavailable for learning at the moment due to the low
level. The wizard should remember the order and move towards its achievement. The later the order,

the higher the priority.

The field value may not be available in all game modes.

4.1.12 CLASS Minion

This class is inherited from a living unit and describes a minion.

DECLARATION

public class Minion

extends LivingUnit

METHODS

e getCooldownTicks
public int getCooldownTicks()

— Returns - the delay between attacks.

e getDamage
public int getDamage()

— Returns - the damage of one attack.

e getRemainingActionCooldownTicks
public int getRemainingActionCooldownTicks()

— Returns - the amount of ticks remaining before the next attack.

o getType
public MinionType getType()

— Returns - the minion type.

e getVisionRange
public double getVisionRange()

— Returns - the maximal range (between units’ centers), at which this minion can detect other units.

4.1.13 CLASS MinionType

Minion type.

45

DECLARATION

public final class MinionType

extends Enum

FIELDS

e public static final MinionType ORC_WOODCUTTER

— A melee fighter. No so strong as orc warrior, but still dangerous.

e public static final MinionType FETISH_BLOWDART

— A magical creature with sharp darts.

4.1.14 CLASS Move

An encapsulated result of each move of your strategy.

DECLARATION

public class Move

extends Object

METHODS

getAction
public ActionType getAction()

— Returns - the current wizard action.

getCastAngle
public double getCastAngle()

— Returns - the current cast angle.

getMaxCastDistance
public double getMaxCastDistance()

— Returns - the current maximal cast distance.

getMessages
public Message[] getMessages()

46

— Returns - the current messages for iriendly wizards.

e getMinCastDistance
public double getMinCastDistance()

— Returns - the current minimal cast distance.

e getSkillTolearn
public SkillType getSkillToLearn()

— Returns - the currently selected skill to learn.

e getSpeed
public double getSpeed()

— Returns - the current move speed.

e getStatusTargetld
public long getStatusTargetld()

— Returns - the current ID of the status spell target.

e getStrafeSpeed
public double getStrafeSpeed()

— Returns - the current strafe speed.

o getTurn
public double getTurn()

— Returns - the current turn angle.

e setAction
public void setAction(ActionType action)

— Usage

* Sets the action for one tick.

The specified action can be ignored by the game engine, if the controlling wizard has insufficient
manapoints or this action is on cooldown.

e setCastAngle
public void setCastAngle(double castAngle)

— Usage
% Sets the cast angle for one tick.

The cast angle is in radians and is relative to the current angle of the wizard. The cast angle is in
range of -game.staffSector / 2.0 to game.staffSector / 2.0.

If a specified value is out of the range, than it become equal to the nearest value of the range. The
positive values mean turning clockwise.

If the specified action is not a projectile spell, than the game engine will simply ignore this
parameter.

e setMaxCastDistance
public void setMaxCastDistance(double maxCastDistance)

— Usage

47

x Sets the maximal cast distance for one tick.

[f the distance from the center of the projectile to the point of its occurrence is greater than the
value of this parameter, the projectile will be removed from the game world. In this case, the
FIREBALL projectile detonates.

The default value of this parameter is higher than the maximal flying range of any projectile in the
game.

If the specified action is not a projectile spell, than the game engine will simply ignore this
parameter.

o setMessages
public void setMessages(Message[] messages)

— Usage
* Sets the messages for the wizards of the same faction.

Available only to the master wizard. If not empty, the number of messages must be strictly equal
to the number of wizards of the friendly faction (dead or alive) except the master wizard.

Messages are addressed in ascending order of wizard IDs. Some messages can be empty (null),
if supported by the programming language used by strategy. In other case all items should be the
correct messages.

The game engine may ignore the message to a specific wizard, if there is another pending
message to the same wizard. If the addressed wizard is dead, then the message will be removed

from the game world and the wizard will never get it.

Not all game modes support the messages.

e setMinCastDistance
public void setMinCastDistance(double minCastDistance)

— Usage
x Sets the minimal cast distance for one tick.

[f the distance from the center of the projectile to the point of its occurrence is less than the value
of this parameter, the battle properties of the projectile are ignored. The projectile passes freely
through all other game objects, except trees.

Default value is 0. 0. All collisions between a projectile and its caster are ignored by the game
engine.

If the specified action is not a projectile spell, than the game engine will simply ignore this
parameter.

e setSkillTolearn
public void setSkillToLearn(SkillType skillToLearn)

— Usage
x Selects the skill to learn before the start of the next tick.

The setting will be ignored by the game engine if the current wizard level is less than or equal to
the number of the already learned skills. Some skills may also require learning other skills.

In some game modes a wizard can not learn skills.

48

e setSpeed

public void setSpeed(double speed)

— Usage

*

Sets move speed for one tick.

By default the speed is in range of -game . wizardBackwardSpeed to
game . wizardForwardSpeed. These limits can be extended depending on skills of moving wizard
and auras of nearby friendly wizards. The HASTENED status can also greatly speed up a wizard.

If a specified value is out of the range, than it become equal to the nearest value of the range. The
positive values mean moving forward.

[f the value hypot (speed / maxSpeed, strafeSpeed / maxStrafeSpeed) is greater than
1.0, than both speed and strafeSpeed will be divided by this value.

o setStatusTargetld
public void setStatusTargetld(long statusTargetld)

— Usage

*

Sets the ID of the target living unit to cast a status spell.

According to the game rules, the valid targets are only the wizards of the same faction. If the
wizard with the specified ID is not found, the status is applied directly to the wizard performing
the action. The relative angle to the target should be in range of -game . staffSector / 2.0 to
game.staffSector / 2.0. The distance to the target is limited by wizard. castRange.

The default value of this parameter is -1 (wrong ID).

If the specified action is not a status spell, than the game engine will simply ignore this parameter.

e selStrafeSpeed
public void setStrafeSpeed(double strafeSpeed)

— Usa
%

ge
Sets the strafe speed for one tick.

By default the strafe speed is in range of -game .wizardStrafeSpeed to
game .wizardStrafeSpeed. These limits can be extended depending on skills of moving wizard
and auras of nearby friendly wizards. The HASTENED status can also greatly speed up a wizard.

If a specified value is out of the range, than it become equal to the nearest value of the range. The
positive values mean moving to the right.

If the value hypot (speed / maxSpeed, strafeSpeed / maxStrafeSpeed) is greater than
1.0, than both speed and strafeSpeed will be divided by this value.

e setTurn

public void setTurn(double turn)

— Usa
*

ge

Sets the turn angle for one tick.

The turn angle is in radians and is relative to the current angle of the wizard. By default the turn
angle is in range of -game . wizardMaxTurnAngle to game.wizardMaxTurnAngle. The
HASTENED status increases bot limits by 1.0 + game.hastenedRotationBonusFactor times.

If a specified value is out of the range, than it become equal to the nearest value of the range. The
positive values mean turning clockwise.

49

4.1.15 CLASS Player

The instance of this class contains all the data about player state.

DECLARATION

public class Player

extends Object

METHODS

getFaction
public Faction getFaction()

— Returns - the faction of this player.

o getld
public long getld()

— Returns - the unique player ID.

e getName
public String getName()

— Returns - the name of the player.

e getScore
public int getScore()

— Returns - the amount of score points.

o isMe
public boolean isMe()

— Returns - true if and only if this is your player.

e isStrategyCrashed
public boolean isStrategyCrashed()

— Returns - true if and only if the strategy of this player is crashed.

4.1.16 CLASS Projectile

This class is inherited from a circular unit and describes a projectile.

50

DECLARATION

public class Projectile

extends CircularUnit

METHODS

o getOwnerPlayerld
public long getOwnerPlayerld()

— Returns - the ID of the player, which unit created this projectile, or -1.

e getOwnerUnitld
public long getOwnerUnitld()

— Returns - the ID of the unit created this projectile.

o getType
public ProjectileType getType()

— Returns - the type of the projectile.

4.1.17 CLASS ProjectileType

Projectile type.

DECLARATION

public final class ProjectileType

extends Enum

FIELDS

e public static final ProjectileType MAGIC_MISSILE

— A small piece of pure energy, that inflicts damage to a living unit upon a direct hit.

e public static final ProjectileType FROST_BOLT

— Inflicts damage upon a direct hit and freezes a target for game . frozenDurationTicks. A frozen unit
can not move or perform any actions.

e public static final ProjectileType FIREBALL

o1

— Explodes when reaching maximal cast range or upon a collision with living unit. Damages and burns
any living unit, if a distance to the center of this unit is not greater than
game.fireballExplosionMinDamageRange + livingUnit.radius. The greater the distance, the
less the instant damage.

e public static final ProjectileType DART
— Sharp thing flying at high speed. Inflicts damage upon a direct hit.

4.1.18 CLASS SkillType

Skill type. In some game modes a wizard can not learn skills (see game . skillsEnabled).

There is three skill groups: active, passive and auras.

e Active skills provide an ability to perform a new action, not available before. < /li>

e Passive skills are constantly improving some characteristic of the wizard for a certain value. < /li>

e Auras are constantly improving some characteristic of the wizard and all friendly wizards in the
game.auraSkillRange.

DECLARATION

public final class SkillType

extends Enum

FIELDS

public static final SkillType RANGE_BONUS_PASSIVE_1

— Passive skill. Increases cast range by game . rangeBonusPerSkillLevel.

public static final SkillType RANGE_BONUS_AURA_1

— Aura. Increases cast range by game . rangeBonusPerSkillLevel.

Requires RANGE_BONUS_PASSIVE_1.

public static final SkillType RANGE_BONUS_PASSIVE_2

— Passive skill. Increases cast range by 2.0 * game.rangeBonusPerSkillLevel.

Requires RANGE_BONUS_AURA_1.

public static final SkillType RANGE_BONUS_AURA_2

— Aura. Increases cast range by 2.0 * game.rangeBonusPerSkillLevel.

Requires RANGE_BONUS_PASSIVE_2.

public static final SkillType ADVANCED_MAGIC_MISSILE

52

— Passive skill. Removes the MAGIC_MISSILE spell delay. The common action delay
game .wizardActionCooldownTicks still applies.

Requires RANGE_BONUS_AURA_2.

public static final SkillType MAGICAL. DAMAGE BONUS_PASSIVE 1
— Passive skill. Increases instant magical damage by game . magicalDamageBonusPerSkillLevel.

public static final SkillType MAGICAL_DAMAGE BONUS_ AURA 1

— Aura. Increases instant magical damage by game .magicalDamageBonusPerSkilllevel.

Requires MAGICAL_DAMAGE_BONUS_PASSIVE_1.
public static final SkillType MAGICAL_DAMAGE_BONUS_PASSIVE_2

— Passive skill. Increases instant magical damage by 2.0 *
game .magicalDamageBonusPerSkillLevel.

Requires MAGICAL_DAMAGE_BONUS_AURA_1.
public static final SkillType MAGICAL_DAMAGE _BONUS_AURA_2

— Aura. Increases instant magical damage by 2.0 * game.magicalDamageBonusPerSkillLevel.
Requires MAGICAL_DAMAGE_BONUS_PASSIVE_2.
public static final SkillType FROST_BOLT
— Active skill. A wizard can now use the FROST_BOLT spell.
Requires MAGICAL_DAMAGE_BONUS_AURA_2.
public static final SkillType STAFF_DAMAGE_BONUS_PASSIVE_1

— Passive skill. Increases staif damage by game . staffDamageBonusPerSkillLevel.
public static final SkillType STAFF_ DAMAGE _BONUS_AURA |
— Aura. Increases staff damage by game . staffDamageBonusPerSkillLevel.
Requires STAFF_DAMAGE_BONUS_PASSIVE_1.
public static final SkillType STAFF_DAMAGE_BONUS_PASSIVE 2
— Passive skill. Increases staff damage by 2.0 * game.staffDamageBonusPerSkillLevel.
Requires STAFF_DAMAGE_BONUS_AURA_1.
public static final SkillType STAFF_ DAMAGE_BONUS_AURA 2
— Aura. Increases staff damage by 2.0 * game.staffDamageBonusPerSkillLevel.
Requires STAFF_DAMAGE_BONUS_PASSIVE_2.
public static final SkillType FIREBALL
— Active skill. A wizard can now use the FIREBALL spell.
Requires STAFF_DAMAGE_BONUS_AURA_2.
public static final SkillType MOVEMENT BONUS_ FACTOR_PASSIVE 1

— Passive skill. Increases movement speed by 1.0 + game.movementBonusFactorPerSkillLevel
times.

Summarily MOVEMENT _BONUS_FACTOR_PASSIVE_2 and MOVEMENT _BONUS_FACTOR_AURA_2 increase
movement speed by 1.0 + 4.0 * game.movementBonusFactorPerSkillLevel times.

53

e public static final SkillType MOVEMENT BONUS_ FACTOR_AURA 1
— Aura. Increases movement speed by 1.0 + game.movementBonusFactorPerSkillLevel times.
Requires MOVEMENT_BONUS_FACTOR_PASSIVE_1.

e public static final SkillType MOVEMENT_BONUS_FACTOR_PASSIVE_2

— Passive skill. Increases movement speed by 1.0 + 2.0 *
game .movementBonusFactorPerSkillLevel times.

Requires MOVEMENT _BONUS_FACTOR_AURA_1.

e public static final SkillType MOVEMENT_BONUS_FACTOR_AURA_2

— Aura. Increases movement speed by 1.0 + 2.0 * game.movementBonusFactorPerSkillLevel
times.

Requires MOVEMENT_BONUS_FACTOR_PASSIVE_2.
e public static final SkillType HASTE
— Active skill. A wizard can now use the HASTE spell.
Requires MOVEMENT _BONUS_FACTOR_AURA_2.

e public static final SkillType MAGICAL DAMAGE ABSORPTION_ PASSIVE 1

— Passive skill. Decreases received magical damage by
game.magicalDamageAbsorptionPerSkillLevel.

e public static final SkillType MAGICAL _DAMAGE ABSORPTION AURA 1
— Aura. Decreases received magical damage by game .magicalDamageAbsorptionPerSkillLevel.
Requires MAGICAL_DAMAGE_ABSORPTION_PASSIVE_1.

e public static final SkillType MAGICAL_ DAMAGE_ABSORPTION_PASSIVE_2

— Passive skill. Decreases received magical damage by 2.0 *
game.magicalDamageAbsorptionPerSkillLevel.

Requires MAGICAL_DAMAGE_ABSORPTION_AURA_1.

e public static final SkillType MAGICAL_DAMAGE_ABSORPTION_AURA_2

— Aura. Decreases received magical damage by 2.0 *
game.magicalDamageAbsorptionPerSkillLevel.

Requires MAGICAL_DAMAGE_ABSORPTION_PASSIVE_2.

e public static final SkillType SHIELD
— Active skill. A wizard can now use the SHIELD spell.

Requires MAGICAL_DAMAGE_ABSORPTION_AURA_2.

4.1.19 CLASS Status

A magical status, affecting living unit.

o4

DECLARATION

public class Status

extends Object

METHODS

o getld
public long getld()

— Returns - the unique status ID.

e getPlayerld
public long getPlayerld()

— Returns - the ID of the player, which unit casted this status, or -1.

o getRemainingDurationTicks
public int getRemainingDurationTicks()

— Returns - the remaining status duration.

o getlType
public StatusType getType()

— Returns - the status type.

o getWizardld
public long getWizardld()

— Returns - the ID of the wizard casted this status or -1.

4.1.20 CLASS StatusType

Status type.

DECLARATION

public final class StatusType

extends Enum

55

FIELDS

public static final StatusType BURNING

— A living unit receives some damage each time tick.

public static final StatusType EMPOWERED

— A living unit inflicts more damage than usually, excluding DOT (damage over time).

public static final StatusType FROZEN

— A living unit can not move or perform any actions.

public static final StatusType HASTENED

— A living unit has increased move and turn speed.

public static final StatusType SHIELDED

— A living unit receives less damage than usually, excluding DOT (damage over time).

4.1.21 CLASS Tree

This class is inherited from a living unit and describes a tree.

DECLARATION

public class Tree

extends LivingUnit

4.1.22 CLASS Unit

Base class that describes any object (“unit”) in the game world.

DECLARATION

public abstract class Unit

extends Object

56

METHODS

e getAngle
public final double getAngle()

— Returns - the turn angle in radians of this unit. Direction of the X-axis has zero angle. Positive angle
corresponds to the rotation in a clockwise direction.

e getAngleTo
public double getAngleTo(double x, double Yy)

— Parameters

x x - X-coordinate of the point to get the angle to.
* y - Y-coordinate of the point to get the angle to.

— Returns - the relative angle to the specified point. The angle is in range of -PI to PI both inclusive.

e getAngleTo
public double getAngleTo(Unit unit)

— Parameters
* unit - the unit to get the angle to.

— Returns - the relative angle to the center of the specified unit. The angle is in range of -PI to PI both
inclusive.

e getDistanceTo
public double getDistanceTo(double x, double Yy)

— Parameters

* x - X-coordinate of the point to get the distance to.
x y - Y-coordinate of the point to get the distance to.

— Returns - the range between the specified point and the center of this unit.

e getDistanceTo
public double getDistanceTo(Unit unit)

— Parameters
x unit - the unit to get the distance to.
— Returns - the range between the center of the specified unit and the center of this unit.

e getfaction
public Faction getFaction()

— Returns - the faction of this unit.

o getld
public long getld()

— Returns - the unique unit ID.

e getSpeedX
public final double getSpeedX()

— Returns - the X speed component or the last tick X-coordinate change, if this unit can instantly
change its speed. The X-axis is directed from left to right.

e getSpeedY
public final double getSpeedY()

o7

— Returns - the Y speed component or the last tick Y-coordinate change, if this unit can instantly
change its speed. The Y-axis is directed downward.

o getX
public final double getX()

— Returns - the X of the unit’s center. The X-axis is directed from left to right.

o getY
public final double getY()

— Returns - the Y of the unit’s center. The Y-axis is directed downward.

4.1.23 CLASS Wizard

This class is inherited from a living unit and describes a wizard.

DECLARATION

public class Wizard

extends LivingUnit

METHODS

o getCastRange
public double getCastRange()

— Returns - the maximal cast range..

e getlevel
public int getLevel()

— Returns - the current wizard level.
Each wizard starts at level 0 and can level up up to game.levelUpXpValues.length times.

In some game modes a wizard can not gain new levels.

e getMana
public int getMana()

— Returns - the current amount of manapoints.

o getMaxMana
public int getMaxMana()

— Returns - the maximal amount of manapoints.

e getMessages
public Message[] getMessages()

o8

— Returns - the messages addressed to this wizard.

A strategy can only read messages of the controlling wizard.

e getOwnerPlayerld
public long getOwnerPlayerld()

— Returns - the ID of the owner player.

o getRemainingActionCooldownTicks
public int getRemainingActionCooldownTicks()

— Returns - the amount of ticks remaining before any new action.

A wizard can perform the action actionType if and only if both remainingActionCooldownTicks
and remainingCooldownTicksByAction[actionType.ordinal()] are equal to zero.

o getRemainingCooldownTicksByAction
public int[] getRemainingCooldownTicksByAction()

— Returns - the non-negative integer numbers. Each item is equal to the amount of ticks remaining
before the next action with the corresponding index.

For example, remainingCooldownTicksByAction[0] corresponds to NONE action and always equal
to zero. remainingCooldownTicksByAction[1] corresponds to STAFF action and equal to the
amount of ticks remaining before the next staff attack.

A wizard can perform the action actionType if and only if both remainingActionCooldownTicks
and remainingCooldownTicksByAction[actionType.ordinal()] are equal to zero.

o getSkills
public SkillTypel[] getSkills()

— Returns - the skills of this wizard.

e getVisionRange
public double getVisionRange()

— Returns - the maximal range (between units’ centers), at which this wizard can detect other units.

o getXp
public int getXp()

— Returns - the current amount of experience points.

e isMaster
public boolean isMaster()

— Returns - true if and only if this wizard is master.

There is exactly one master wizard per faction.

e isMe
public boolean isMe()

— Returns - true if and only if this wizard is your.

4.1.24 CLASS World

This class describes a game world. A world contains all players and game objects (“units”).

59

DECLARATION

public class World

extends Object

METHODS

e getBonuses
public Bonus[] getBonuses()

— Returns - visible bonuses (in random order). After each tick the bonus objects are recreated.

e getBuildings
public Building[] getBuildings()

— Returns - visible buildings (in random order). After each tick the building objects are recreated.

o getHeight
public double getHeight()

— Returns - the world height.

o getMinions
public Minion[] getMinions()

— Returns - visible minions (in random order). After each tick the minion objects are recreated.

o getMyPlayer
public Player getMyPlayer()

— Returns - your player.

e getPlayers
public Player[] getPlayers()

— Returns - all players (in random order). After each tick the player objects are recreated.

e getProjectiles
public Projectile[] getProjectiles()

— Returns - visible projectiles (in random order). After each tick the projectile objects are recreated.

o getTickCount
public int getTickCount()

— Returns - the base game duration in ticks. A real game duration may be lower. Equals to
game.tickCount.

o getTickindex
public int getTicklndex()

— Returns - the current game tick.

o getTrees
public Tree[] getTrees()

60

— Returns - visible trees (in random order). After each tick the tree objects are recreated.

o getWidth
public double getWidth()

— Returns - the world width.

o getWizards
public Wizard[]l getWizards()

— Returns - visible wizards (in random order). After each tick the wizard objects are recreated.

61

[naBa b

Package <none >

Package Contents Page
Interfaces
] 8 1 Y

This interface contains the methods that each wizard strategy should implement.

62

5.1 Interfaces

5.1.1 INTERFACE Strategy

This interface contains the methods that each wizard strategy should implement.

DECLARATION

public interface Strategy

METHODS

e move
public void move(Wizard self, World world, Game game, Move move)

— Usage
x Main strategy method, controlling the wizard. The game engine calls this method once each time
tick.

— Parameters

self - the wizard controlling by this strategy.

x world - the current world snapshot.

* game - many game constants.

* move - the object that encapsulates all strategy instructions to the self wizard.

*

63

	The Announcement of the Competition
	The Name Of The Competition
	Information about the Organizer of the Competition
	The period of the Competition
	The conditions for obtaining the status of the Participant
	The period of registration of Participants in the System of the Organizer
	The territory of the Competition
	The conditions of the Competition (the essence of the tasks, criteria and evaluation procedure
	The procedure of determining the Winners and award Prizes. The prize Fund of the Competition
	The procedure and method of informing Participants

	About the world of CodeWizards 2016
	General provisions of the game and the rules of the tournament
	Description of the game world
	Unit classes
	Wizard characteristics
	Control of the wizard
	Other game objects
	Collision of units
	Scoring

	Creation of the strategy
	Technical part
	Control of the wizard
	Implementation examples
	Java example
	C# example
	C++ example
	Python 2 example
	Python 3 example
	Pascal example
	Ruby example

	Package model
	Classes
	Class ActionType
	Class Bonus
	Class BonusType
	Class Building
	Class BuildingType
	Class CircularUnit
	Class Faction
	Class Game
	Class LaneType
	Class LivingUnit
	Class Message
	Class Minion
	Class MinionType
	Class Move
	Class Player
	Class Projectile
	Class ProjectileType
	Class SkillType
	Class Status
	Class StatusType
	Class Tree
	Class Unit
	Class Wizard
	Class World

	Package <none>
	Interfaces
	Interface Strategy

